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ABSTRACT

The thermal and electrical resistivities of Pd-Ni alloys at concen-
trations ranging from 0 to 1.0 at-% Ni have been measured at tempera-
tures between 2 and 200K. The Lorenz numbers Le appropriate to
electron-electron scattering have been extracted from the data and are
found to be relatively insensitive to Ni concentration. A theoretical
calculation of Le has been carried out under the assumption that the
entire current is carried by s electrons which are scattered from spin
density fluctuations of the electrons in the d band. A consistent inter-
pretation of the data is obtained by employing the local enhancement
model, while the uniform enhancement model is found to yield values of
Le which decrease too rapidly with increasing Ni concentration to rea-
sonably represent the experimental results. The calculated value of Le
is significantly smaller than the experimental value for pure Pd; it is
felt this may be due to the neglect of detailed band structure effects in
this work. Lorenz numbers for Baber scattering have also been calcu-
lated by using Coulomb interaction screened by the d electrons. It is
found that the presence of Baber scattering cannot remove the discrep-
ancy between theory and experiment for pure Pd. The Baber scattering
model is also used to calculate the Le for rhenium and gives very good
agreement with experiment.

PROBLEM STATUS

This report completes one phase of the problem; work on other
aspects of the problem is continuing.

AUTHORIZATION
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ELECTRON-ELECTRON SCATTERING EFFECTS IN THE LOW
TEMPERATURE LORENZ NUMBERS OF DILUTE Pd-Ni ALLOYS

INTRODUCTION

It has been known for some time that the T2 dependence of the electrical resistivity

at low temperatures in nonmagnetic transition metals can be interpreted as arising from
the scattering of those electrons primarily responsible for carrying the current by elec-
trons which exhibit much larger effective mass and which lie in other bands. The first
theoretical calculation of this scattering process was Baber's (1) analysis of de Haas and
de Boer's observation of a T2 term in the electrical resistivity of platinum. Baber con-
sidered an s band of conduction electrons scattered by a screened Coulomb interaction

with the much heavier d-band electrons which make only a small contribution to the

transport current. Although the T2 term in the electrical resistivity of many transition

metals has been observed (2) since this early work, it was not until very recently that
the corresponding contribution to the thermal resistivity, a term linear in T, was ex-
perimentally established (3-7). With the observation of the electron-electron thermal
resistivities, it becomes feasible to study electron-electron scattering in the appropriate
metals by use of the Lorenz number; i.e., the ratio of the electrical resistivity to the
product of the thermal resistivity with the absolute temperature. This provides a useful
characterization of the scattering, for the Lorenz number is sensitive to the angular dis-
tribution of the scattering, while certain quantities whose magnitudes are difficult to es-
timate on theoretical grounds drop out of the ratio. Furthermore, by making experimen-
tal observations of both the thermal and the electrical resistivity of the same specimen
and with the same probes, the difficult task of accurately determining specimen geome-
tries is circumvented.

The dilute Pd-Ni alloy system appears to be a very appropriate one for a study of
electron-electron scattering effects employing Lorenz number measurements because,
as shown by Schindler and Rice (8), the electron-electron term in the electrical resistiv-
ity of palladium is strongly enhanced by the addition of small amounts of nickel. In their
original presentation of the data, Schindler and Rice used a model in which the current-
carrying s electrons were scattered by spin density fluctuations of the electrons in the
d band. They postulated that the effect of the nickel could be represented by increasing

the exchange enhancement in the entire matrix in some average fashion; i.e., they em-
ployed the so-called "uniform enhancement" model. Lederer and Mills (9) later showed
that the data could also be interpreted in terms of the scattering of s electrons from
spin density fluctuations by assuming that enhancement due to the addition of nickel oc-
curred in the vicinity of the nickel impurity. In fact, they showed that this "local en-
hancement" model gave better correlations between the electrical resistivity and mag-
netic susceptibility data than had been obtained from the uniform model. We have
undertaken a study of the Lorenz numbers of these alloys in the hope of obtaining more

information concerning the relevance of these models to the effect of electron-electron
interactions on the transport properties of this (and similar) systems.

From an experimental point of view, the observation of the electron-electron term
in. the thermal resistivity of the alloys is expected to be complicated by the possible
presence of a significant amount of heat transport via the lattice. The work of Schindler
and Rice indicates, however, that in the dilute Pd-Ni alloys the electron-electron term
would be expected to be sufficiently large that it would still be discernible in the presence

1



SCHRIEMPF, SCHINDLER, AND MILLS

of a lattice heat conduction of typical size for transition metal alloys. In other, less-
enhanced, alloy systems, the detailed behavior of the electron-electron term would be
expected to be masked by the phonon term. Moreover, since the determination of the
Lorenz number Le for electron-electron scattering is particularly well suited to a dif-
ferentiation between the uniform and local models, as we shall see below, it was felt that
the Le values of these alloys would be of considerable interest.

This report is presented in five sections. In the next (second) section, we employ a
simple two-band model to calculate expressions for Le for Pd-Ni at low temperatures
for both uniform and local enhancement. Although terse presentations of results of simi-
lar calculations have already appeared (8,10-13), we present here a discussion in some
detail because this type of calculation is central to a study of the effects of electron-
electron interaction on the Lorenz number. Furthermore, a full discussion of this cal-
culation is appropriate in that, for reasons which shall be presented, we find ourselves
in disagreement with features of the earlier work. In the third section, we present the
results of measurements of the thermal and electrical resistivities between 2 and 20 K
of Pd-Ni specimens ranging from pure Pd to Pd-1.0 at-% Ni. The fourth section contains
a development of specific predictions for the Le of Pd-Ni from the theory of the second
section. We find that the local enhancement model provides a consistent interpretation
of the alloy data, whereas the uniform enhancement model predicts a more rapid fall of
Le with increasing Ni concentration than is experimentally observed. We also found that
the Le' of pure Pd is not well estimated by our simple model of scattering from spin
density fluctuations. Here we also calculate Le for the case of electrons interacting via
a simple screened Coulomb interaction, that is when the scattering is the so-called
Baber scattering, and we find that Baber scattering will not resolve the discrepancy be-
tween theory and experiment observed in pure Pd. In the last section, we consider some
of the implications of this work with regard to other types of measurements and other
transition metals. In particular, our model of Baber scattering is found to yield an esti-
mate of Le for rhenium which fits well with the experimental value.

THEORETICAL CONSIDERATIONS

In this section we examine the theory of the electron transport coefficients of transi-
tion metal alloys, with application to the theory of the Lorenz number in mind. We shall
employ the simple s-d model in this discussion (14). That is, one imagines that the
Fermi surface of the material has an s-like portion, nearly free-electron in character,
and also a d-like portion. Since the d band is much narrower than the s band, the effec-
tive mass of the d electrons is large compared to that of the s electrons. Thus, the
transport currents are carried primarily by the s electrons. Since the contribution to
the density of states at the Fermi level from d electrons is large compared to that of the
s electrons, the magnetic properties of the material as well as the specific heat are de-
termined primarily by the d electrons. The s-d model has been widely used to interpret
the observed properties of transition metals and their alloys (1,8-15). The model is of
dubious validity for host metals in the middle of the transition metal series, since s-d
hybridization is important in this portion of the periodic table. However, for the ele-
ments near the right end of the periodic table, band-structure calculations (16) indicate
that this simple model provides a reasonable qualitative picture of the nature of the
Fermi surface, although the d-like portion is apparently very complex in shape.

A number of authors have considered the contributions to the electrical and thermal
resistivities of transition metals from electron-electron interactions (1,8-15). We de-
note the contributions to the electrical and thermal resistivity from electron-electron
scattering by Pe and we, respectively. In most of this work, two mechanisms have been
considered as providing the principal contributions to Pe and we. Baber (1) considered
the scattering of an s electron by d electrons resulting from the direct Coulomb

2



NRL REPORT 6949

interaction between the particles. This mechanism has recently been reexamined by
Rice (11). One may regard this scattering process as resulting from the interaction of
the s electron with the number density fluctuations in the d band. Recently, it has been
pointed out (8-10,15) that in materials which are strongly exchange enhanced, the scat-
tering of s electrons from the large-amplitude spin density fluctuations in the d band
can dominate Pe and we.

In this section, we construct a theory of the Lorenz number Le = Pe/(weT) of Pd and
Pd-Ni alloys, assuming that the principal contribution to Pe and we comes from the spin
density fluctuations in these strongly exchange-enhanced materials. Two models have
been introduced to explain the transport coefficients of this alloy system. The uniform
enhancement model assumes that the effect of adding Ni may be represented by a change
in the exchange enhancement factor of the matrix (8). The local enhancement model
treats the alloy in a scheme valid in the dilute limit, where the spatial inhomogeneity of
the spin density fluctuations in the vicinity of the Ni site is taken into account. It has
been pointed out (9) that the local enhancement model appears to provide a more consist-
ent interpretation of the magnitude of the effect of alloying on Pe, and also of the rela-
tionship between the concentration dependence of the coefficient A of the T term in the
electrical resistivity and that of the magnetic susceptibility x. In this section, we shall
present calculations of the concentration dependence of Le for both models. We find that
the local enhancement model offers a reasonable value for the Lorenz number of the al-
loys in the concentration region where the spin fluctuation contribution to Pe and we is
dominated by scattering in the vicinity of the Ni sites. However, we find that in pure Pd,
the spin fluctuation scattering leads to a value of Le that is smaller than the observed
value. The uniform enhancement model leads to a value for Le that decreases rapidly
with increasing Ni concentration, in disagreement with the data. Of course, the two
models lead to the same value of Le for the pure matrix.

We also examine the contribution to the Lorenz number from Baber scattering in the
pure matrix. We find that if Baber scattering dominates Pe and we in the pure metal,
the predicted Le is still significantly smaller than the observed value. This discrepancy
may be resolved if band-structure effects are properly taken into account. Rice (11) has
examined the contribution to Le from Baber scattering, assuming the s-d Coulomb in-
teraction is statically screened by the s electrons. However, in materials with partially
filled d bands, the static dielectric constant e (q, 0) is dominated by the d band (17),
since the Fermi-Thomas screening wave vector K associated with a given band is pro-
portional to the contribution from that band to the density of states at the Fermi level.
When the s-d interaction is screened by the d electrons, the value of Le that obtains
differs from the values given by Rice (11). Also, in these metals the coefficient A of the
T2 term in e is not proportional to the square of the density of states at the Fermi
level (11), since an increase in the density of states shortens the Fermi-Thomas screen-
ing length and decreases the value of the effective s-d matrix element.

Before we proceed to. the quantitative discussion, we present some simple, intuitive
considerations that will illustrate the effect of electron-electron scattering on the Lorenz
number. This will provide a useful reference when we examine the effect of various fac-
tors that enter the quantitative theory of Le.

For this purpose, we apply the diagrammatic scheme employed by Klemens (18) in
his discussion of the transport properties of metals. In the steady state, the distribution
of the conduction electrons in k space under the influence of either a thermal gradient or
an electric field can be visualized crudely as shown in Fig. 1, where we assume a spheri-
cal Fermi surface for simplicity. We let the solid dots represent an increase in the
number of electrons over the "zero field" value, and the open circles indicate a decrease
in this number. This type of crude picture permits a qualitative understanding of the
effects of various kinds of scattering on the Lorenz number.
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- V T Fig. 1 - Schematic representation of electron distributions in the steady
state under the assumption of a spherical Fermi surface. The case of a

(a) thermal gradient is depicted in part a, while that of an electric field is
illustrated in part b. Solid dots represent an excess number of electrons
over the distribution in the absence of external forces, whereas open cir-
cles represent a deficiency with respect to this distribution. Both dots
and circles are intended tobewithinathermal layer of the Fermi surface.
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Consider first the case of elastic scattering. An electron in state A can relax only
to states on the same constant energy surface, if only elastic scattering is present. A
typical transition of this type would be a scattering from the initial state A to a final
state A' , as indicated in Fig. 1. Klemens refers to this kind of transition as a "horizon-
tal" transition. As long as the linearized Boltzmann equation can be used to describe the
transport process, it is clear that the thermal conductivity relaxation time and the elec-
trical resistivity relaxation time are the same for the case of elastic scattering. This is
because the time required for the relaxation to equilibrium of the states on a given con-
stant energy surface is independent of the amplitude of the deviation from equilibrium on
this constant-energy surface. As indicated in Fig. la and b, the angular variation of the
change in distribution of particles on any particular constant-energy surface is the same
for both the electrical resistivity and the thermal resistivity. It is only the amplitudes
that differ. Thus, as long as the energy dependence of the relaxation time may be ig-
nored, the electrical and thermal relaxation times must be the same, and the classical
Sommerfeld value L of the Lorenz number is realized.

Next consider the Lorenz number Le from electron-electron scattering. A given
electron can suffer energy changes in a collision with another electron. We will be in-
terested in the case where a current-carrying s electron collides with an electron in the
partially filled d band. This allows s-electron transitions of the type A - B in Fig. la.
One can see that the thermal conductivity and the electrical conductivity relaxation times
are now different. An extreme example of this difference is the well-known case of the
contribution to p and w from electron-phonon collisions at low temperatures, where
only long-wavelength phonons are thermally excited. In this regime, the electron distri-
bution is relaxed predominantly by small-angle scattering events. The effective relaxa-
tion time for the electrical resistivity p becomes longer than that for the electronic
contribution to w by a factor of roughly (D/T) 2 , producing a Lorenz number that van-
ishes as T o. By analogy with the scattering of electrons by phonons, we may expect
the Lorenz number Le defined above to be reduced from the Sommerfeld value L,
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because of the inelastic nature of the electron-electron collisions.* However, there are
important differences between the two cases, primarily because in electron-electron
scattering, large-angle scatterings contribute to the transport relaxation time even at
low temperatures.

Let us consider the qualitative features of the electron-electron scattering. Suppose
we examine the contribution to the transport current from an s electron in the state A of
Fig. 1. For simplicity, let the wave vector kA of this state be directed parallel to the
transport current. Suppose the electron is scattered by a d electron through an angle o
to some final state B, as indicated in Fig. 1. If the collision is inelastic, the final-state
energy EB does not equal the initial energy EA. For a spherical Fermi surface, this
collision changes the contribution of state A to the electrical current j by the amount
(with =)

A * x*(k.. kB) e* (1- Cos . (1)

In Eq. (1) m* denotes the effective mass, e the charge, and kF the Fermi wave vector of
the current-carrying electrons, while is a unit vector along the direction of the cur-
rent. Now consider the effect of the same collision on the energy transport current j w.
Noting that the contribution of a given state to the heat current (19) is (E - ) k/m*, where
{ is the Fermi energy, we have

Ajw - [kA(EA-/') - kB(EB-/)]

= * A_ kB)(EA- + kB(EAi)J

kF (2)
"%* [(1 - Cos 0)(EA-v) + cosO(EA-EB)]

Both terms in this last expression are of the same order of magnitude for the most
important values of EA and EB. We may think of the collision as a two-step process.
First, the electron is scattered through the angle , with no change in energy. This al-
ters the heat current by the amount indicated in the first term of Eq. (2). Then the elec-
tron changes its energy by the amount (EA- EB). This gives the second contribution to
A j indicated in Eq. (2). In the case of the electrical resistivity, only the first step is
effective in changing the transport current, since the small shift in velocity associated
with the second "jump" can be neglected to a good approximation. Thus, crudely speak-
ing, a given inelastic collision of the type described is twice as effective in reducing the
heat current as it is in reducing the electrical current. As a consequence, the Lorenz
number Le defined above should be roughly half of the classical Sommerfeld value L.
Of course, for elastic scattering, the second term of Eq. (2) is missing, and a given col-
lision is equally effective in reducing both transport currents. One then obtains the
classical Lorenz number L as a consequence.

Any feature of the scattering matrix element which peaks the scattering in the for-
ward direction will decrease the quantity Le below the value LS/2 suggested by the
above argument, since this enhances the relative contribution of the "second step" (the
vertical step in Klemens's language) to the thermal resistivity relaxation rate. In the

*Herring has argued that for transition metals with Fermi surfaces of complex geometry, with all
portions of the Fermi surface contributing to the transport currents, one should find (Le/Ls) 2/3
in the absence of impurity scattering. (See Ref. 9.) We shall comment on the applicability of Herr-
ing's argument to the present system later in this section.
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case of phonon scattering at temperatures low compared to the Debye temperature OD,
one has an extreme example of this effect, since only scattering through angles less than
OC (T/OD) << 1 is important. It is easy to see that the second term of Eq. (2) dominates
A j w, so that one obtains the well-known result

(1 - cos 0) sin 0dO 2

Lphonon J =_d2e(T 

[ sin 0 dO

For the case of phonon scattering, the temperature dependence of Lphonon arises because
of the temperature dependence of the cutoff angle o For electron-electron scattering,
the matrix element is temperature independent to a good approximation, and as a conse-
quence, the Lorenz number Le is temperature independent.

We now turn to the detailed calculation of we and p e. As we mentioned, we first
assume that in the strongly exchange-enhanced Pd-Ni system, the dominant contribution
to Pe and we comes from the scattering of s electrons by the large-amplitude, spin-
density fluctuations in the d band (8,9,15). Since the details of the calculation of Pe have
appeared in the literature, we present a detailed discussion of only the computation of
the thermal resistivity we.

A typical scattering event is indicated in Fig. 2. This diagram illustrates spin-flip
scattering of an s electron from the exchange-enhanced transverse fluctuations in spin
density in the d band. The wavy line is the s-d exchange interaction J (15), and the
dotted lines indicate the interaction between the excited particle and the hole in the d
band. Of course, in the theory of the transport coefficients, nonspin-flip scattering from
longitudinal fluctuations must also be included. We shall assume that only the s elec-
trons carry the currents, as mentioned above. Consequently the d electrons will be
treated as if they were in thermal equilibrium.

We shall employ the variational method discussed by Ziman, and write the electron-
electron contribution to we in the form (20)

E X [D(ka) - D(k'a')]2 P(k- ,k' ')
1ka k'a'

2kB 2 (3)

E V (ko ) [E (ka - ](ko) fE (ka)

The quantity kB is Boltzmann's constant, and a is a spin index. In Eq. (3),

P (ka kra ')

is the number of transitions per unit time from state (ko) to ( 'a') when the system is
in thermal equilibrium, i.e.,

P(koa-k'ao') = [1 - f(k'a')] f(ko)W(ku-k'a')

where W (k - k'a') is the transition rate for the case when (ka) is occupied and (k 'u') is
empty, and f (ka) is the equilibrium occupation number. The deviation of the distribu-
tion function from equilibrium is written
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d

St

Fig. 2 - Diagram of a typical spin-flip
scattering of an s electron from the
exchange-enhanced transverse fluctua-
tion in spin density in the d band. The
wavy line represents the s-d exchange
interaction J (15), and the dotted lines
indicate the interaction between the ex-
cited particle and hole in the d band.

f (k a) = f 0 (k a) - 4) (k a) a f (k a)

In the denominator of Eq. (3), V (k a) = VkE (k a) , and is the chemical potential.

Since we shall consider only paramagnetic alloys in zero magnetic field, F (ka) and
fI(k o) are independent of spin. We then define

P(k k') = X P(ka-k'a')
a 

and write the expression for we in the form

E [F (k) - (k')] 2 P(k -k')
kk'

We = (4)

afo (k)| V(k)[E(k) - ] (k) -E(k)
k~~~~~~d k

To compute we, we take for the function ¢D(k) an expression of the form

) (k) = u * V (k) [E (k) - p] , (5)

where u is a vector directed parallel to the heat current. We then evaluate Eq. (4) by
assuming the s-electron energy to be that appropriate for a spherically symmetric,
parabolic band.

Before proceeding with the details of evaluating the expression in Eq. (4), some brief
comments are in order. Equation (4) may be derived by computing the rate at which en-
tropy is produced by the collisions of the s electrons. In addition to the electron-
electron scattering under consideration in this section, impurity scattering is also

7
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present. In fact, the electron-electron contribution to w is small compared to the con-
tribution from impurity scattering, for the temperature range of interest in this work.

If for P(k - k') we were to take the sum of the impurity scattering rate and the scat-
tering rate from the spin fluctuations in the d band, and if for D (k) we were to insert the
exact solution to the Boltzmann equation, we of course would obtain an exact expression
for the total thermal resistivity w from Eq. (4). In the presence of impurity scattering
only, one knows the linearized Boltzmann equation can be solved exactly if the constant-
energy surfaces are spherical (20). The solution has the form of Eq. (5) if the energy
dependence of the relaxation time can be ignored. When the electron-electron scattering
rate is small compared to the impurity scattering rate, one may compute the change in
the rate of entropy production to first order in the electron-electron scattering rate by
using perturbation theory. One obtains the expression in Eq. (4), where (k) is the exact
form for a spherical Fermi surface with impurity scattering only, and P (k k') is the
scattering rate from electron-electron collisions. The structure of the theory is analo-
gous to the Schrodinger equation, with the entropy analogous to the energy, and the scat-
tering kernel to the Hamiltonian. The change in energy to first order in some small
perturbation is found by averaging the perturbation over the unperturbed wave function.
These remarks also apply to the calculation of the electron-phonon scattering contribu-
tion to w, provided this contribution is small compared with the impurity scattering
background. This is consistent with the manner in which we separate the measured total
resistivities into their component parts.

The denominator in Eq. (4) is readily evaluated. One finds

D= 4 | V(k)[E(k) - ] (k) (k)
k 6

= u 2 2(k]3T) , (6)

where k is the Fermi wave vector of the s band, and m is the effective mass of the s
electrons.

Consider the numerator next. For the paramagnetic metal,

E W(kaok'o') = 2W(kt-k't) + W(kt-k') + W(kU-k't)
aa'

For the model under consideration, one finds (15)

W(ktf-k') 4fN _ dte-in(kk')t(S()(kS-kO)S(+)(k'-k,t))T

W(k-fk't) = 4N J dte (+)(k-kO)S(_)(k- kt))T.

In these expressions, J is the magnitude of the s-d exchange interaction, N the number
of unit cells in the crystal, (k, k') = E (k) - E (k'), and S(+ ) (q, t ) is the operator that
describes the appropriate transverse component of spin density in the d band of wave
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vector q. The scattering rate from longitudinal fluctuations is easily derived, using the
previous techniques:

_coW(kt-k'f) J f dte-i'(k,kD)t(Sz(k-kt,o) tS.z(k-k',t)T

From detailed balance considerations, one has (15)

W(kVlk't) = e[E(k)-E(k')] W(k't-+kl)

where , = l/kBT.

Since the Hamiltonian is invariant under spin rotations, and since the ground state is
presumed to be paramagnetic, one easily sees that

W(kt-k't) = - W(kI-k't) + W(kt-k')]
4

The expression for the thermal resistivity we may then be simplified to the form

W = 2k3 X k) (k')12 f (k) [1 - f0 (k')] W(kt k'4,)
Bkk '

We now employ the specific form of W(kt-k'4). If the Bloch functions of the d elec-
trons may be treated in the tight binding approximation, then we may write

W(kt-k'4l) = {1 + n [(k,k')] A [(k' - k,Ql(k, k')3 F(k' - (7)4N

where A (qQ) is the spectral density function deduced from the wave vector and the
frequency-dependent transverse susceptibility. Explicitly (15),

A(qQ) = X [x(qQ- i) - (qQ+ iE)]

where is a positive, infinitesimal quantity. The quantity F(q) is the form factor of the
Wannier function ID(r) associated with the unit cell centered at the origin; that is,

F(q) = f d3 r exp(iq r)4(D(r)I 2

In Eq. (7), n [Q (k, k') is the Bose-Einstein factor, evaluated at the frequency Q (k, k') .

In the present calculation, which considers only the low-temperature form of the
transport coefficients, we will encounter collisions with energy transfers of the order of
kBT, where T is at most 200K. Thus, we may replace A(qO) in Eq. (7) by its low-
frequency limiting form. Since it is well known that A (q, Q) is an odd function of fre-
quency, one can write the low-frequency form as

A(q, ) = a (q) (8)

We then evaluate we by employing Eq. (7) and by using the low-frequency form of
A (q ) given in Eq. (8). One more simplification is convenient. The form factor F (q)
will depend in general on both the magnitude and the direction of q, if we choose F(q) to
be the form factor of a realistic d orbital. We shall assume that F(q) depends only on

9
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I qI and ignore the dependence on the direction of q. To include the dependence of F on
the direction and magnitude of q would greatly complicate the numerical computations to
be presented later. We make the same simplification for the function a(q) defined in
Eq. (8).

With these approximations and the assumption that the s
evaluate we in a straightforward fashion. We find

band is parabolic, one may

we-=64 4 v v2 [Ib/3(3) + I(1)]

where

v is the number of unit cells per unit volume,

v is the Fermi velocity of the s electrons,

and

(9)

co

Ia = dxdx'(x- x) 3 f (x)[1 _
-CD

b= dxdx'xx'(x - x') f (x) [1
-a,

fo (x')] [1 + n(x- x')],

- f (x')] [1 + n(x- x')3,

2Q

3(m) = J d71 m (k71)IF(ksq )2
0

Notice that (m) has the dimensions of /(energy) 2. We have introduced the variable
= V/ V1 - cos 0, where is the angle through which the s electron is scattered. Q is

determined by the momentum of the d electrons and is related to the maximum angle, M,
through which the s electrons are scattered, by 2Q = i1 - cos 0M. In the case of a
spherical d band, Q = max {(kd/kS), 1.

The integrals I and b, together with I which appears below, are evaluated in
the appendix. We find

Ia = 874/15 and b = 24/15

One can compute the electrical resistivity p e in the same fashion. We find

PJ 2 kB 
Pe 6 4 vfie 2V5 2 1 0 (3 (10)

where /3(3) is defined above, and

I = J dxdx'(x-x') f(x)[ - f(x')][1 + n(x-x')] = 22/3 .
-a,

We now form the expression for the Lorenz number Le* We have

10
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Le =LS[ + (11)

where L is the classical Sommerfeld value of the Lorenz number. Since Eq. (11) in-
volves only the ratio {I( 1)/ [P(3)]}, the Lorenz number Le depends only on the angular
distribution of the scattering.

Two comments should be made concerning the form of Eq. (11). We have argued
above that when impurity scattering is strong compared to electron-electron scattering,
the procedure we employ gives an exact expression for we and Pe. Thus, Eq. (11) is
also exact, for the simple s-d model, in the limit of strong impurity scattering. Re-
cently, exact solutions of the Boltzmann equation have been exhibited for the case where
only electron-electron scattering is present (21). It has been pointed out (11) that in this
case, the exact solution shows the Lorenz number Le is larger than that given by Eq. (11)
by a factor of 6/5. However, this theory cannot be used to describe the properties of
transition metals at low temperatures, where the electron-electron scattering makes
only a small contribution to the total resistivity- for materials available so far.

Rice has also examined the theory of the Lorenz number Le for the scattering of
s electrons from d-electron spin fluctuations, when the spin fluctuations are described
by the uniform enhancement model (10). Rice treats the transverse spin fluctuations in a
manner similar to that of the present work. However, he treats the nonspin-flip scatter-
ing that results from the sSz of the s-d exchange interaction as if this scattering were
Baber scattering (1). Rice thus obtains an expression for Le which differs from that in
Eq. (11). However, we have seen that the szSz scattering rate may be related to the
scattering from transverse fluctuations by simple considerations of rotational invariance,
if the metal is paramagnetic and if no external field is present. The effect of including
the sz scattering may be accounted for by simply multiplying the spin-flip scattering
rate by 3/2 in both p e and we, as we have done above. The factor of 3/2 is well known,
and was first pointed out in a slightly different context by Penn (22).

We remark finally that Eq. (11) may be applied to both the uniform enhancement
model and the local enhancement model. The two differ by the form of a(k s ), i.e., by
f(1)/[/(3)]. This statement assumes that the principal effect of the Ni atom is to change
the values of the d-d Coulomb interaction in the impurity cell. In this approximation,
one ignores the effect of the change in J and the change in form factor on the transport
properties.

EXPERIMENTAL RESULTS

We present in this section the results of thermal and electrical resistivity measure-
ments between 2 and 200K on Pd-Ni specimens containing approximately 1/4, 1/2, and 1
at-% Ni. The data on pure Pd, which is included here for reference, has appeared in
earlier papers (5,6), but was obtained under the same experimental conditions in the
same cryostat as the data for the Pd-Ni specimens.

The cryostat employed for these measurements has been described in detail else-
where (4). Temperature differences were measured with a Au-0.02 at-% Fe vs Ag-0.37
at-% Au thermocouple which was calibrated in a separate experiment with a germanium
resistance thermometer. This germanium thermometer was calibrated at the National
Bureau of Standards in accordance with the 1965 Provisional Temperature Scale. Elec-
trical resistivities were determined with a four-probe potentiometric system. The
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uncertainties in the electrical resistivities are approximately ±0.2%, while the thermal
resistivities have estimated uncertainties of the order of ±1/2 percent.* Both electrical
and thermal resistivities were measured on the same specimens and with the same con-
tacts, so that the Lorenz number values obtained are essentially free of errors due to
inaccuracies in measuring specimen geometries.

The alloys were prepared from Johnson-Matthey palladium sponge and Johnson-
Matthey nickel rods of five 9's nominal purity by induction melting in quartz crucibles
under an argon atmosphere which was purified by use of a dry-ice and acetone trap. The
resultant ingots were then swaged to the desired geometry, rods 6 in. long and roughly
1/8 in. in diameter. Strain-relief anneals were performed at intermediate steps in the
swaging, and a final anneal of 4-1/2 hr at 9000C in a vacuum of about 1 x10-5 Torr was
performed just prior to mounting the specimens in the cryostat.

X-ray fluorescence analysis of the completed specimens indicated that the nickel
concentrations of each rod were uniform to within ±0.1 at-%. A more accurate wet
chemical analysis of both ends of each specimen was also performed, and the results
indicated an end-to-end compositional uniformity of within ±0.02 at-%. A wet chemical
analysis of the iron impurity content of each sample was also made. The results indi-
cated that the Fe impurity content appears to increase with increasing Ni concentration.
A tabulation of the wet analysis results appears below.

In analyzing the measured resistivities, we shall make use of Matthiessen's rule in
a general sense and separate the total resistivities into the sums of terms arising from
the scattering of the electrons by impurities, phonons, and other electrons. As discussed
in the second section, this separation is appropriate when the impurity scattering is much
larger than the scattering by the electrons or the phonons. Thus we shall extract values
of the electron-electron terms for comparison with the above theory by concentrating on
the data at the lower temperatures, where the impurity scattering is dominant.

We have, therefore, compared the measured electrical resistivities (p) at the lower
temperatures to an equation of the form

P = P0 + AT2 + BT5
(12)

where p0 is the impurity resistivity, T the absolute temperature, AT2 the dominant
electron-electron scattering term, and BT5 the result of the scattering of electrons by
phonons. The results are presented in Fig. 3 in a plot of (p - p)/T 2 vs T3. These re-
sults are in agreement with those of Schindler and Rice (8), in that we observe A values
which increase and B values which decrease with increasing Ni concentration, as shown
in Table 1. The values of A, B, and po have been obtained from least-squares fits of the
data at the lower temperatures to Eq. (12).

*As one of the authors (J. T. Schriempf) has pointed out (Ref. 6), the present stage of development of
standards for the absolute temperature scale limits the accuracy of thermal resistivity determi-
nations to approximately 99-1/2%.

Nominal Left-end Right-end
Composition Composition Composition Fe Content

(at-% Ni) (at-% Ni) (at-% Ni) (ppm by wt)

0.21 0.20 0.23 2
0.5 0.47 0.48 2
1.0 0.96 1.00 5

12
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Fig. 3 - Electrical resistivity p of the Pd-Ni alloys (with
Ni concentrations as indicated) as a function of the cube of
the absolute temperature T. The straight lines were ob-
tained by a least-squares comparison of the data at the
lower temperatures to the equation p = p0 + AT2 + BT5 .

Turning now to the thermal resistivity, if we again assume that resistivities due to
various scattering mechanisms are additive, the thermal resistivity w at low tempera-
tures can be represented by

w = C + aT + /3T 2 (13)
T

In Eq. (13), C/T is the impurity scattering term, aT the electron-electron scattering
term, and T2 represents the effect of scattering of electrons by phonons. Ignoring the
possibility of phonon conduction for the moment, the data can be compared to Eq. (13) by
plotting (wT - C)/T2 vs T. This has been done in Fig. 4, where values of have been
obtained by simply extrapolating the data to 0K in a plot of wT Vs T 2. These c values
yield Lorenz numbers (L0) in the T = 0 limit which are shown in Table 1 and are in rea-
sonable accord with the Sommerfeld value of 2.443 x 10-8 V2/ 0 K2. The existence of an
electron-electron term, as evidenced by a nonzero value of (wT- C)/T2 as T approaches
zero, is clearly evident in Fig. 4. It is also apparent that the electron-electron scatter-
ing term increases markedly as Ni is added to Pd. The trend of the data in Fig. 4 to
higher values as T approaches 0K is suggestive of a nonnegligible lattice heat conduc-
tion, although the scatter of the data caused by the overwhelming importance of the im-
purity scattering term at the lowest temperatures makes it difficult to definitely establish
this trend. The intercepts of the straight lines in Fig. 4 yield values of a, and hence the
electron-electron Lorenz number L = A/a. These values, shown in Table 1, are mark-
edly insensitive to Ni concentration, although they increase somewhat at the higher
concentrations.

In the above analysis, we have ignored the possibility of a significant amount of heat
conduction via the lattice. At temperatures below about 100K, it is expected (18) that
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Fig. 4 - Total thermal resistivity w of Pd-Ni alloys
as a function of the absolute temperature T. Values
of c were obtained by extrapolation to 0K on a plot
of wT VS T2. The straight lines have been obtained
from least-squares fits of the data to Eq. (13) of the
text for Pd and Pd-0.21 at-% Ni, and were simply
drawn through the data for the other specimens. The
error bars represent 0.5 percent of the total meas-
ured resistivities.

electron scattering of the phonons would dominate, and thus the phonon conduction would
exhibit a temperature variation of T2 . Since conductivities due to different carriers are
additive, we can write

I =1- DT2
Wei W (14)

where We1 is the thermal resistivity appropriate to the electrons alone and D is a con-
stant. The appropriate thermal resistivity for Eq. (13) is of course wel, and Eq. (13)
can thus be modified to the form

T ii/w) T _ CJ = a + T.
L(1/W) - DT2 T2

(15)

Inspection of Eq. (15) reveals that the omission of a phonon term tends to reduce the
values of deduced from the data, and hence to increase the apparent values of Le.
This apparent enhancement of Le would be larger in the more concentrated alloys, where
phonon conduction is a larger fraction of the total conduction. Thus without an independ-
ent knowledge of the term DT2, one cannot obtain reliable values of Le from the data.
We can estimate the magnitude of D for each specimen by using the expression given by
Klemens (18),
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D = 313 /3-1 O4 N-4/ 3 (16)

where D is the Debye temperature and N the number of conduction electrons per atom.
Since OD varies slowly with concentration in this range (23,24), and the value of D for
pure Pd is expected to be relatively free of electron-electron effects, the parameters of
pure Pd can be used in Eq. (16) to estimate D. We have done this, assuming that Na =
0.3, OD = 2700K, and = 2.6x10- 4 cm/W K, and obtain D 10-3 W/cm K3. Using this
value of D and Eq. (15), we find that the Le values are not appreciably changed in the
pure Pd and Pd-0.21 at-% Ni specimens, although Le values of the higher concentration
alloys now fall below the pure Pd value. However, as pointed out by Fletcher and Greig
(25), Eq. (16) tends to overestimate D. Furthermore, in the isoelectronic Pd-Ni alloy
system, one would expect D to decrease as the Ni concentration is increased.

We have found that the data for each specimen can be well represented by the follow-
ing scheme. We determine a value of by setting C = p /La, where L is the Sommer-
feld value of the Lorenz number, and a value for by setting a = A/L, where we take
Le = .lx 10-8 V2 /0 K2 . With a least-squares technique, we then vary D and /3 to obtain
a best fit of the data for T < 100 K. The results are presented in Fig. 5, where the
straight lines are those obtained from the least-squares calculation. We note that the
data are in reasonable accord with this treatment. The values of D obtained in this fash-
ion, as shown in Table 1, are not only the right order of magnitude, but they decrease
with increasing Ni concentration. Thus it appears likely that the L of Pd is essentially
unchanged by the addition of up to 1.0 at-% Ni. However, in this work we take a more
conservative interpretation and increase the approximate basic experimental uncertainty
of the Le values of ±10% to an upper limit obtained by ignoring phonon conduction, and a
lower limit obtained by assuming a D value of 10-3 W/(cm K3) for all the specimens.

39.0 1 I 1 1 I 1 I

35.0 Pd
0 0.21 At %NI
X 0.5At %NI

31.0- + .0At %NI+ + + ~ ~ ~ + +_ 27.0 - ++

E 2.0 L X_0 

E +

21.0- X X

19.0

7.0 - *_
0

7.0 0_ -

0 2 4 6 8 10 12 14 16 18 20
T(

Fig. 5- Electronic thermal resistivities wel of Pd-Ni
alloys as a function of the absolute temperature T.
c was obtained from the electrical data according to
C = p 0 / L,. The straight lines are the results of least-
squares fits as discussed in the text.
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Thus, in units of 10-8 V2 /0 K2, the Le values are 1.1 ± 0.1 for pure Pd and Pd-0.21 at-%
Ni, 1.1 + 0.2, -0.5 for Pd-0.5 at-% Ni, and 1.1 + 0.4, -0.5 for Pd-1.0 at-%Ni.

COMPARISON OF THEORY AND EXPERIMENT

We turn now to a consideration of specific forms of the integrals /3(m) defined in the
second section which will permit us to compare the measured values of Le to those val-
ues predicted by both the uniform and the local enhancement models. The spectral den-
sity function A (q, Q) defined above is related to the wave vector and frequency-dependent
transverse susceptibility x(q,&) by (26)

A(q, ) = i Im[x(q2-iE)]. (17)
lT

By using the definition of (q) in Eq. (8) and ignoring the dependence on direction of q,
Eq. (17) leads to the following form for a (q) for the case of the uniform enhancement
model, with a spherical approximation for the d band:

al(q) =c (ks/q) ( 2kd q) (18)

where C is a multiplicative constant whose value does not affect Le; kd is the d-electron
Fermi wave vector, and (x) = 0 when x < 0. In Eq. (18), x)(q, 0) is the real part of
the dynamic susceptibility of a noninteracting Fermi gas of d electrons and I is the mag-
nitude of the spatially averaged electron-electron Coulomb repulsion of the d electrons
in the alloy. Here we have invoked the result of the random phase approximation,

= (0) (q,) )
1 - x(~0 ) (q,Q)

In a similar fashion (9), the expression for a(q) for the local enhancement model can be
written as

(q) = CL - R (q0)] (19)

1- IPdx XR(qO°

where I'Pd refers to the value of I appropriate to the pure palladium matrix and CL is
again a constant whose value leaves Le unaffected. The form in Eq. (19) does not depend
on any detailed assumption about the shape of the d band. The factor of 1/q in Eq. (18)
is strictly correct only for the spherically symmetric, parabolic model of the d band.
However, one may show that, for a band of arbitrary shape, a(q) is proportional to /q
in the small-q limit. Thus, for the general case, Eq. (18) is correct only for small q,
but we can assume the form is valid for all values of q and regard it as a rough extrapo-
lation into the large-q region.

It is apparent from Eqs. (18) and (19) and the definitions of (m) that, once the model
is chosen, the calculated values of Le depend only on the form factor IF (q) 2 and on the
structure of X(O)(qo). We shall calculate a specific form of x () (q 0) under the as-
sumption of a spherical d band and introduce a specific form of F(q)j 2. But it is in-
structive to first consider in a semiqualitative fashion how Le depends on x(°) (q, 0) for
the two types of enhancement. For this purpose we set IF(q) 2 = 1 and assume that,
since the Pd-Ni system under consideration is nearly ferromagnetic, x° (q, o) has a
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maximum value at q = 0 and falls off more or less smoothly with increasing q. In order
to make some simple numerical estimates, let us assume that x() (q, 0) falls off very
slowly with a quadratic dependence on q; i.e.,

X( ) (q, 0) = N (0) [ 1 q2]

where is an adjustable parameter and N(0) is the unenhanced density of states of the
d band evaluated at the Fermi energy. We define I = IN(0) and 2 = k.2. We recall
from the second section that the quantity Q = max (kd/k,), 1} for the spherical model,
and assume that 4Q 2 I 2 is small compared to (1-I). The integrals p (m) are then simply
evaluated and, from Eq. (11) we have, for the uniform and local models, respectively,

L(U) 5L Q 2

9 + 3Q 2 + 96 I 2 Q 2 (20)
51 - I

and

LL) 5L Q(21)
6 + 3Q + 8 --

1 IPd

In Eqs. (20) and (21) we can see a simple illustration of the effect on the Lorenz
numbers of restricting the scattering angle. From the definition of Q, it is apparent that
a maximum scattering angle of yields Q = 1, and Q decreases as the scattering is re-
stricted to smaller angles by limiting the value of kd. Both expressions for Le become
rapidly smaller as Q becomes smaller, i.e., as the scattering becomes restricted to
smaller angles. Furthermore, the values of Le are seen to decrease as increases;
the more rapidly x ) (q, 0) falls with q, the smaller the Lorenz number. Finally, in
Eq. (20), it is apparent that Le in the case of uniform enhancement falls rapidly as the
enhancement factor 1/(1 - I) increases, and thus, in this model, Le values predicted for
Pd-Ni fall rapidly with increasing Ni content.

We see from these simple considerations that the largest values of Le which can be
obtained occur for a x () (q, 0), which is independent of q, and for momentum transfers
which permit scattering through all angles. The maximum values are L(U) = 1.018 x 10-8

V and L (L) = 1.36 X10-8 whres/hedaa2oralv 2/0 K2 and -8 v 2/K 2 , whereas the data for all concentrations yield val-
ues of the order of 1.0 X10 8 V2 /0K2 . It will be shown that in a more detailed treatment
we will obtain agreement with the data by assuming x () (q, 0) falls off slowly with q,
with Q near unity.

It should be pointed out that the value of L(L) obtained from Eq. (21) with Q = 1 and
= 0 is the value of the Lorenz number appropriate to electron-electron scattering when

all angular dependence of the scattering matrix element is neglected. In other words, in
this limit, our calculation reduces to a calculation of the Lorenz number for spherically
symmetric scattering by single-particle excitations of low frequency which dominate the
scattering at low temperatures. This is the Lorenz number calculated by Herring (13),
who postulated that the complexities of the Fermi surfaces in the transition metals would
result in a lack of angular dependence of the scattering. In fact, Herring's value of
1.58 x 10-8 V2/0 K2 , which was calculated in the absence of impurity scattering, reduces
to a modified value (27) of about 1.35x10- 8 V 2/OK2 when the effect of the presence of
very strong impurity scattering is included. This is just the value we obtained above by
using for our variational calculation, trial functions appropriate to the presence of a
large amount of impurity scattering.
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In an attempt to fit the data of the third section we have assumed that d electrons
occupy a simple spherical band. In this case the real part of the dynamic susceptibility
can be written as

X( )(qO) = N(O)[ h(k q)] (22)

where h (x) is the Lindhard function

h(x) = 1 + i2 + (23)

Then the integrals (m) become

{3(U)(m) = j d, -_ h( 2)} IF(ksq) 2 (24)

and
2

1(L)(m) = ' d,7 17m IF(k 2 . (25)

To calculate explicit values of Le from Eqs. (24) and (25), it is necessary to adopt values
for the parameters as well as an explicit expression for F(k,7). A value of k was ob-
tained by using the de Haas-van Alphen data of Vuillemin (28) for Pd and approximating
the roughly spherical s-like portion of the Fermi surface with a sphere of radius k =
9.125x107 cm . We treat kd as an adjustable parameter, while for 'd we assume
the value of 0.9.* Since the d-like portion of the Pd Fermi surface is very complex, we
regard kd as a parameter which characterizes in an average way the manner in which
X(°) (q, 0) falls off with increasing q. We shall not attempt to associate k with any
feature of the grossly nonspherical d-hole surfaces in Pd.

F (q) was obtained by using the radial portion of the 4d (10) orbitals of atomic Pd
calculated by Herman and Skilman (29). It was found that the dominant features of the
square of the tabulated radial wave function could be roughly represented by a function of
the form r2 exp (-r 2 /r 2 ) with an r0 of 0.58x10-8 cm. The Fourier transform of this
function, normalized to unity at q = 0, yields for F(q):

F(q) = [ 1 - 1/6 (qro y2] exp [- (qro )2 /4] (26)

It is interesting that the Lorenz numbers are fairly sensitive to the form of F(q). The
form shown in Eq. (26) yields a Lorenz number which is reduced by roughly 20% below
the value obtained with an F(q) 2 of unity for all values of q. Other functions which we
have tried yield an even larger reduction of Le. A representation of the d orbital by
I I(r) 2 e exp (- r/r 0 ), for example, reduces the Lorenz number by more than a factor of
two.

*The value of IPd has not been definitely established, but 0.9 is the generally accepted value (cf. S.
Foner and E. J. McNiff, Jr., Phys. Rev. Letters 19:1438 (1967)).
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To compare the calculated Lorenz numbers to the data, we define the parameter
aA/APd by

&A Aalloy_ APd (27)
XPd APd

where the electrical resistivity due to electron-electron scattering is represented by AT2.
Consider first the uniform enhancement model. For a given choice of kd, Eq. (24) can be
used together with Eqs. (10) and (11) to calculate both Pe and Le as functions of I. Then
by noting that for pure Pd, I IPd, and by using the definition in Eq. (27), the parameter
I can be eliminated to yield L(U) as a function of A/APd.

For the local enhancement model, Eqs. (25) and (11) yield a Lorenz number appro-
priate to the scattering at the nickel sites only. It is necessary to account for the scat-
tering by the host Pd matrix, which exhibits a Lorenz number obtained by the uniform
enhancement model with I equal to Pd* If c is the concentration of Ni atoms, for small
concentrations one can write

(Pd) + p(Ni)

e [(Pd) + cw(Ni)

which, after a little algebra, becomes

+ A

e Pd LPd A (28)

LNi APd

where Ld is the pure Pd value of Le, and LNi = (P (Ni)/W(NiT). In applying Eq. (28) we
identify Ld with an Le calculated from the uniform enhancement model with I = ipd;
while LNi is the Le calculated with the local enhancement model.

The integrals (m) were evaluated by standard computer techniques, and the results
are shown in Fig. 6 as a plot of Le as a function of 5A/APd. Calculations were carried
out for various values of kd, and it was found that the computed values of Le were an
order of magnitude smaller than the measured values unless kd was set larger than k .
The theoretical curves exhibited in Fig. 6 were obtained with kd = 2k,. Note that the
uniform enhancement model yields an Le which falls off much too rapidly with increasing
Ni content. This is caused, as we have seen, by this model's strong increase of small-
angle scattering with increasing enhancement.

The largest discrepancy between theory and experiment is seen to be at pure Pd. A
natural question is whether or not this discrepancy is caused by the omission of Baber
scattering in our treatment of the resistivities of the pure matrix. To investigate this
possibility, we have calculated the contribution of Baber scattering to the resistivities of
these materials. The matrix element for screened Coulomb interactions is proportional
to /(q 2 + K2), where K is the Fermi-Thomas screening length. Now K2 is given by
47Te2N(O) where N (0) is the total density of states at the Fermi level. In materials with
unfilled d bands, N (0) is dominated by the d-band contribution rather than the s-band, as
Rice has assumed (11). To obtain an estimate of K, one notes that for s electrons in a
spherical band, (477 e2 N (0),) /

2 would give a KS 15 x10 7 cm'1. Since the density of
states of the d electrons is known to be much larger than that of the s electrons, K will
be much larger than K. and K >> q over the entire range of q. Thus the matrix element
can be replaced by a constant. We then have, apart from the multiplicative factor,
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Fig. 6- Comparison of calculated and measured
values of Le for Pd and dilute Pd-Ni alloys. A
is the coefficient of the T2 term in the electri-
cal resistivity, and A = Aoy - Apd. The
solid dots and error bars represent values of
Le extracted from the data. The solid lines are
the results of calculations for both local and
uniform enhancement models of spin density
fluctuation scattering with Pd = 0.9, k =
9.125x10 7 cm-l, and kd = 2kg. The dashed
lines are the results of modifying the calcula-
tion by adding a concentration-independent
amount of Baber scattering to the spin density
fluctuation scattering; the dashed curves shown
here assume 90 percent of the scattering in
pure Pd is Baber scattering.

2Q
(B) (M)= f d,7 m-1 F(kr7)1 2

. (29)

For pure Baber scattering, with the F(q) and value of k used above, Eqs. (29) and
(11) yield a Lorenz number of 0.8304x 10-8 V2/0 K2 . Therefore, even if one assumed
that all of the electron-electron scattering in pure Pd was due to Baber scattering, the
calculated Lorenz number would not agree with the experimental result. By assuming
that Baber scattering and electron-paramagnon scattering contribute additively to the
resistivities and that the same amount of Baber scattering present in pure Pd is also
present in the alloys, the curves in Fig. 6 can be modified to include Baber scattering.
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The modified curves shown in Fig. 6 indicate the effect of assuming that 90 percent of
the scattering in pure Pd is due to screened Coulomb interactions.

DISCUSSION

The most striking feature of this work is that it is clear that a i°R) (q, ) which
varies slowly in the range 0 < q < 2k, is required to represent the data. Although our
most detailed calculations were carried out with the somewhat unrealistic model of a
spherical d band, it is apparent from arguments presented in the previous section that
only a rather flat x40) (q, 0) function for these values of q is consistent with the data.
We note, however, that recently Kim and Schwartz (30) concluded from their interpreta-
tion of Low and Holden's (31) neutron scattering data on dilute Pd-Fe alloys that the
q dependence of the susceptibility function is significantly stronger than that predicted
for a parabolic band of d electrons with kd chosen to fit the number of d holes present
in Pd. Using the small-q approximation to the Lindhard function, the susceptibility for a
parabolic band of d electrons is proportional to [ 1 - (1/12)(q/kd) 2 ]. Kim and Schwartz
find that, with kd adjusted to 5 x 10 7 cm-', this dependence on q is not strong enough to
fit their model to the data of Low and Holden, whereas we find that the much weaker
falloff obtained with kd 18 X107 Cm-1 is required to fit our data. It should be noted
that the theory of Kim and Schwartz assumes that the moment in the Fe cell perturbs the
surrounding Pd matrix in a fashion describable by linear response theory. This linear
response theory predicts that the total moment varies directly as the susceptibility of
the host matrix. That these moments do, indeed, saturate is well known. For example,
Geballe and coworkers (32) found in their measurements of the giant moment of Fe atoms
in Ir-Pt, Pt-Pd, and Rh-Pd matrices that, as a function of the susceptibility of the ma-
trix, the moment per Fe atom falls on a single curve which shows saturation effects at
about 8 Bohr magnetons. Since the moment of Fe in palladium is of the order of 10 or 12
Bohr magnetons, the use of a linear theory may be a poor approximation.

On the other hand, the local-enhancement model employed in the present work gives
a good correlation between the measured values of the coefficients of the electron-
electron electrical resistivities and the magnetic susceptibilities of the dilute Pd-Ni al-
loys. Although the presence of a phonon heat conduction causes some uncertainty in the
analysis of our data, it is clear that a very slowly varying X40 ) (q 0) for 0 < q < 2K is
required to even approach the measured values of the Lorenz number. Furthermore,
this result does not appear inconsistent with the preliminary results of a band-structure
calculation of the frequency and wave-vector dependence of x(°) which is being carried
out by Misetich (33). We feel, therefore, that a slowly varying x° >(q, 0) is more appro-
priate to Pd, although a definite conclusion must await further developments.

As pointed out above, Herring has postulated that the same value of the electron-
electron scattering Lorenz number 1.35 x10-8 V 2/0 K2 may be appropriate to all the
transition metals due to their common property of exhibiting complex Fermi surfaces.
His value is somewhat larger than the data presented here, at least for the Pd and Pd
0.21 at-% Ni specimens, although in view of the simplicity of his model, it is reasonably
close to the measured value. On the other hand, in the course of the present work we
have found that the calculated values of the Lorenz number are quite sensitive, not only
to the angular dependence of the scattering, but also to the details of the shape of the
Wannier function associated with the d band. We note, also, that in the present work we
obtained Lorenz number values which were lower than the experimental values at the
dilute end of the concentration range, although the agreement between theory and experi-
ment was somewhat better at the higher concentrations. We attribute this to our omis-
sion of any detailed band-structure effects which would be more important for pure Pd
and the more dilute alloys, where the scattering by the matrix contributes a larger frac-
tion to the total scattering than does the scattering at the Ni sites. Since the details just
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outlined seem to be important for calculating Lorenz number values appropriate to Pd
and Pd-Ni, we feel that such details may also be important in other transition metals.

To the extent that a two-band model of the type employed here is applicable to other
transition metals, these calculations provide an estimate of the electron-electron scat-
tering Lorenz number for Baber scattering. Since the interaction is screened by the
d electrons, as noted above, and provided that scattering to all angles is possible, Eqs.
(29) and (11) show that the Lorenz number depends only on the parameter k. In fact, in
the absence of a form factor, the Baber scattering Lorenz number predicted here would
be the same in all transition metals and would have a value of 1.02 x 10- 8 V2/0 K2. How-
ever, as we saw above, the form factor is important; in Pd the form factor reduces the
Baber scattering Lorenz number by roughly 20 percent.

The experimental value of Le for rhenium has been found to be Le 0.9 x 10-8 V2 /
0K2 (4), * and it is interesting to compare this value to an estimate obtained from the
present Baber scattering model. For this purpose we employ the model of the Fermi
surface of hcp rhenium suggested by Mattheiss (34). Although the Fermi surface of Re
is rather elaborate, a crude representation can be made. A central, roughly cylindrical
electron sheet centered about the -A axis contains about 0.16 electrons per atom, while
roughly spherical hole surfaces, centered about the points L on the surface of the Bril-
louin zone, contain about 0.15 holes per atom. Other parts of the Fermi surface contain
numbers of electrons per atom which are an order of magnitude smaller than these val-
ues. We can very crudely apply the two-band model by using a sphere of radius roughly
equal to the central cylinder's radius to represent the s electrons, and by assuming that
the dominant scattering of the s electrons is due to the d electrons responsible for the
hole surfaces of Re. The value of k is then roughly 5.3 10 7/cm 1 . We apply the
same function for F (q) as we used for Pd, but find that a value of r0 of 0.68 x 10-8 cm is
appropriate for the 5d (5) orbitals of Re as tabulated by Herman and Skilman (29). We
then obtain from Eqs. (29) and (11) a value of Le = 0.93 x10- 8 V2 /°K 2 . The model of Re
we have used is, indeed, crude, particularly since the model is spherically symmetric
while some anisotropy has been observed in the resistivities. Thus the excellent agree-
ment we obtained is somewhat fortuitous. Nevertheless, we feel this agreement suggests
that our model contains the essential features of Baber scattering, namely that the
screening is accomplished by the d electrons and that the form factors of the Wannier
functions in the d band are important in determining the numerical value of Le.
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Appendix

EVALUATION OF INTEGRALS Ia Ib) AND Ic

We present here the method of converting the integrals Ia Ib, and I to forms
which are listed in integral tables.* Full details will be given for b; Ia and I can be
evaluated by the same technique.

First replace x - x' by y, and x by y + x'. The integral Ib defined in the second
section becomes

OD

I= f dydx'(y 2 x' +x' 2 y) f(y+ x')[1- f0(x' )] [1+n(y)]
-TO

or, upon replacing the variable of integration x' by x and introducing the explicit forms
of f(x) and n(x),

I (x 2 y+ y2 x) dxdy (Al)
-0 ( + ex)( - ey)( 1 + e+")

We introduce the integrals In and Jm such that

= I + I I (A2)

In = (1+ e(x) n= 1,2. (A3)

co ym dy
Jm = - ey)( + ey+x) m 1, 2. (A4)

The integrals Jm can be reduced to tabulated forms by the substitution = ey. ne
obtains

Jm = eX J (1nl) . (A5)
(p - 1)(1 + ex

Using Gradshteyn and Ryzhik's (35) equations 4.232.3 and 4.261.4,

Jm = (12+ X2 )(X)m I ' m = 1, 2, (A6)
Jm(I+ ex)(m+ 1)

With Eq. (A6), the expression (A3) can now be written as

*This technique was suggested to us by J. Oitmaa and A. Grimm.
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co__ (7 2 + 2) X2d
= (~1)2n ~ (1+eX) n = 1, 2 (A7)In 4 - n -co 1 + __X) (A7

By employing the hyperbolic cosine and Gradshteyn and Ryzhik's formula 3.527.5 the in-
tegral in Eq. (A7) is readily evaluated:

4-nHe , fm E. (2 ad ) (A8)

Hence, from Eqs. (A2) and (A8) the final value of Ib is seen to be 2 4/ 15.
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